
A Novel Cooperative Caching Scheme for Wireless Ad Hoc Networks:
GroupCaching

Yi-Wei Ting and Yeim-Kuan Chang

Department of Computer Science and Information Engineering
National Cheng Kung University

701 Tainan, Taiwan R.O.C.
 {p7893113, ykchang}@mail.ncku.edu.tw

Abstract

In the mobile ad hoc network, a mobile host can

communicate with others anywhere and anytime.
Cooperative caching scheme can improve the
accessibility of data objects. However, the cache hit
ratio is reduced and access latency becomes longer
significantly due to the mobility of MHs, energy
consumption in battery, and limited wireless bandwidth.
In this paper, we propose a novel cooperative caching
scheme called GroupCaching (GC) which allows each
MH and its 1-hop neighbors form a group. The caching
status is exchanged and maintained periodically in a
group. By using the proposed GroupCaching, the
caching space in MHs can be efficiently utilized and
thus the redundancy of cached data is decreased and the
average access latency is reduced. We evaluate the
performance of the GroupCaching by using NS2 and
compare it with the existing schemes such as
CacheData and ZoneCooperative. The experimental
results show that the cache hit ratio is increased by
about 3%~30% and the average latency is reduced by
about 5%~25% compared with other schemes.

Keywords: Ad hoc, Cache placement, Cooperative
caching, Group

1. Introduction
Mobile ad hoc networks (MANETs) are formed

with mobile hosts (MHs) such as notebook, PDA, or
cell phone and so on. These mobile devices can create a
wireless network dynamically among themselves
without the aid of any network infrastructure. Every
MH can move arbitrarily and communicate with one
another by using multi-hop wireless links. Each MH
acts as a router and forwards data packets to other
neighbors in the coverage of transmission range.
MANET is very useful under certain environments,
such as battles, disaster rescue, earthquake recovery, and
exploration of an area, etc.

In the last years, research studies in MANETs
mostly focus on designing efficient multi-hop ad hoc
routing protocols for packet forwarding between two
nodes. However, the ultimate goal of a routing protocol
is to create a routing path for data communication.
Therefore, how to improve the accessibility of data

object by using caching techniques is another important
issue.

Caching techniques are an efficient solution for
increasing the performance in message or data
communication. It has been widely used in different
fields such as CPU design, multi-processor, memory
architecture or router design. Furthermore, Interent uses
cache placement and replacement in proxy servers [4]
and cooperative caching architecture [5] to reduce the
network traffic and average latency of data query
significantly. The original idea of caching is that the
data accessed by MHs has the properties of temporal
and spatial locality. Higher temporal and spatial locality
ensures that most accesses will go to the data that were
accessed recently in the past and that reside in the cache.
Therefore, caching frequently requested data can
improve the performance of data communication.

In a MANET, if the MHs cache some frequently
requested data, the cached data can be served for others
later. The requester needs not to retrieve the data from
the remote server (data source) and then requests the
data from the caching node. As a result, the data
accessibility is enhanced. Furthermore, cooperative
caching techniques allow several caching nodes to
coordinate the caching tasks such as the redirection of
data requests, cache placement, or cache replacement.
Existing cooperative caching schemes [1] [3] [6] [7] [8]
[11] [12] allow a data object can be cached by multiple
hosts for enhancing the accessibility of data objects.

There are some challenges and issues such as
mobility of MHs, power consumption in battery, and
limited wireless bandwidth when we employ caching
techniques in MANETs for data communication. Due to
the movement of MHs, MANETs may be partitioned
into many independent networks. Hence, the requester
can not retrieve the desired data from the remote server
(data source) in another network. The entire data
accessibility will be reduced. Also, the caching node
may be disconnected from the network for saving power.
Thus, the cached data in an MH may not be retrieved by
other MHs and then usefulness of the cache is reduced.

The MHs also decide the caching policy according
to the caching status of other MHs. However, the
existing cooperative caching schemes in a MANET lack
an efficient protocol among the MHs to exchange their
localized caching status for caching tasks. Therefore, in
this paper, we propose a novel cooperative caching

International Conference on Networking, Architecture, and Storage (NAS 2007)
0-7695-2927-5/07 $25.00 © 2007

scheme called GroupCaching (GC) which maintains
localized caching status of 1-hop neighbors for
performing the tasks of data discovery, caching
placement, and caching replacement when a data
request is received in an MH. Each MH and its 1-hop
neighbors form a group by using the “Hello” message
mechanism. In order to utilize the cache space of each
MH in a group, the MHs periodically send their caching
status in a group. Thus, when caching placement and
replacement need to be performed, the MH selects the
appropriate group member to execute the caching task
in the group. In our proposed cooperative caching
protocol, the MHs know the caching status of their
neighbors. Based on the proposed GroupCaching, the
redundancy of cached data objects can be reduced
because the MHs can check the caching status of other
group members for deciding the placement and
replacement. Because more cache space can be utilized,
each MH can store more different data objects in a
group and then increases the data accessibility.

The rest of the paper is organized as follows:
Section 2 reviews the related works for cooperative
caching schemes in mobile ad hoc networks. The
proposed GroupCaching scheme is presented in Section
3. Section 4 shows the experimental results of
GroupCaching compared with existing schemes. The
conclusion and future work are presented in section 5.

2. Related works
2.1 CacheData and CachePath

The CacheData [1][12] scheme considers the cache
placement policy at intermediate nodes in the routing
path between the source and the destination. The node
caches a passing-by data item locally when it finds that
the data item is popular, i.e., there were many requests
for the data item, or it has enough free cache space.
Since CacheData needs extra space to save the data, it
should be used prudently. A conservative rule is
proposed as follow: A node does not cache the data if
all requests for the data are from the same node.
However, there is no cooperative caching protocol
among MHs. Each MH independently performs the
caching tasks such as placement and replacement.
CachePath [1][12] is also proposed for redirecting the
requests to the caching node. In MANETs, the network
topology changes fast and thus, the cached path may
become invalid due to the movement of MHs.

2.2 ZoneCooperative
 The ZoneCooperative [11] scheme considers the
progress of data discovery. Each client has a cache to
store the frequently accessed data items. The data items
in the cache satisfy not only the client’s own requests
but also the data requests passing through it from other
clients. For a data miss in the local cache, the client first
searches the data in its zone before forwarding the
request to the next client that lies on a path towards
server. However, the latency may become longer if the

neighbors of intermediate nodes do not have a copy of
the requested data object for the request.

2.3 NeighborCaching
 The concept of NeighborCaching (NC) [13] is to
utilize the cache space of inactive neighbors for caching
tasks. The basic operations of NC are as follows. When
a node fetches a data from a remote node, it puts the
data in its own caching space for reuse. This operation
needs to evict the least valuable data from the cache
based on a replacement algorithm. With this scheme, the
data that is to be evicted is stored in the idle neighbor
node’s storage. In the near future, if the node needs the
data again, it requests the data not from the far remote
source node but from the near neighbor that keeps the
copy of data. The NC scheme utilizes the available
cache space of neighbor to improve the caching
performance. Howerver, it lacks of the efficiently
cooperative caching protocol among the MHs.

3. Proposed GroupCaching scheme
3.1 Motivation

In mobile ad hoc networks, MHs can move
arbitrarily anytime and communicate with another one
for data transmission. Although cooperative caching can
provide the high accessability of data objects, the
caching performance (cache hit ratio and average
latency) can be reduced significantly due to the property
of dynamic topology in MANETs. Possible reasons are
listed as follows:

1. The caching nodes maybe shut down (leave) from the
MANET because the energy of battery is exhausted.
In other words, the cached data of caching nodes can
not be serviced for others and will be removed after it
re-connects the network. On the contrary, when an
MH connects (joins) the network, its content of cache
space is empty. If we can utilize its cache space as
soon as possible, the caching performance will be
enhanced.

2. The cache size of MHs always smaller than general
personal computer. If there is no cooperative caching
protocol among MHs, the cache space in all MHs can
not be utilized effectively. If MHs can know the
caching status of their neighbors, MHs can integrate
their available cache space and efficiently cache data.

3. In MANETs, on-demand routing protocol is prefered
to be used for saving eneregy and bandwidth. In this
way, the caching node is selected based on the routing
path between the source and the destination. Thus, if
the multiple routing paths are passed through the
same nodes, their cache space easily become full and
the energy will be consumed fast.

In order to deal with above conditions, we design a
cooperative caching protocol among MHs. Our goal is
to provide a caching and power efficient protocol in
MANETs. First, an MH and its neighbors form a group.
The group definition is presented in Section 3.2.2.

International Conference on Networking, Architecture, and Storage (NAS 2007)
0-7695-2927-5/07 $25.00 © 2007

Second, each MH sends their caching status to its group
periodically. Third, when a data object needs to be
placed or replaced in an MH, its group members
cooperate to perform the tasks of placemant and
replacement. We assume MHs have the ability to place
the data in its group member [13]. The group caching
has several benefits. First, it can reduce the redundancy
of cached data object because MHs can check the
caching status of other group members when receiving a
data object. Second, it can store more different data
objects and then increase the data accessibility. Third,
the group can store more data objects from the
destinations than an MH because the group members are
cooperative to cache the data objects.

3.2 GroupCaching (GC)
3.2.1 Network model

We model the MANET environment as a graph G
= (V, E), where V represents the set of mobile hosts
(MHs) in the network, and E is the set of links. An edge
e = (u, v) ∈ E, where u, v ∈ V, exists if and only if u is
in the transmission range of v and vice versa.

All links in G are bi-directional, i.e., if u is in the
transmission range of v, v is also in the transmission
range of u. The network is assumed to be in a connected
state. If it is partitioned, each component is treated as an
independent network.

3.2.2 Group definition
Each MH and its one-hop neighbors form a group. A

one-hop neighbor can be covered in the area of
transmission range from an MH. Each MH has a group
member ID. The group member ID may be the IP
address or unique host ID. In order to maintain the
connectivity of a group, we employ the mechanism of
“Hello” messages. “Hello” messages are sent locally in
each MH. These messages are sent periodically as a
“Keep-Alive-Signal”. In this way, each MH knows who
its one-hop neighbors are. Generally, we can obtain the
k-hop neighbor information by piggybacking the
(k–1)-hop neighbor information in “Hello” messages.
However, the biggest concern is the energy consumption
in MHs and constrain of wireless bandwidth. Therefore,
in our proposed GC scheme, each MH only maintains
one-hop neighbors in a group. Figure 1 illustrates the
group in the view of MH D. MH D and its one-hop
neighbors {C, E, G and H} form a group. Each MH
sends their caching status to its group members. Thus,
when a data item is received in MH D, MH D can check
the caching status of each group member and select the
appropriate group member to place the cached data.

3.2.3 Cooperative caching tables
In order to record the caching status of group

members, each MH maintains two tables (self_table and
group_table) to record caching status of itself and its
group members respectively. The self_table contains the
following fields: {Cached data id, Cached data item,
Data source id, Timestamp}. The self_table is updated
when the placement is performed in an MH. The

group_table contains the following fieldss: {Cached
data id, Data source id, Group member id, Timestamp}.
The Timestamp is the caching time of the data object.
When an MH receives the notification of caching status
from the group member, it updates the group_table. If
an MH does not receive the “Hello” message during a
pre-defined number of “Hello” cycles from the
neighbor, it means the neighbor is leaving or shutdown.
The group_table also needs to be updated and remove
the related records of the leaving neighbor when an MH
leaves. From the group_table, an MH knows which data
object is cached in which group member. Therefore,
when a request is received in an MH, it can search the
self_table and group_table to find the record of the
request for data object exist.

A F

S C M

E

L D
B

K PG H

I N J

Group
Figure 1: The group in the view of MH D.

3.2.4 Caching Control message
We design a caching control message to exchange

the caching status in a group periodically. In our
experimental, we set exchange interval at every second.
The caching control message contains the following
fields: {Group member id, Cached data id, Timestamp,
Remaining available cache space}. The caching control
message is periodically sent by MHs. When an MH
receives the caching control message, it updates its
group_table. In other words, each MH can maintain
localized caching statues of one-hop neighbors for
performing cache placement and replacement.

3.3 Placement and replacement policy
In this section, we present how and where to place

the data object in a group member when an MH receives
a data object from the destination. The detailed
algorithm is shown in Figure 2. Based on the usage of
caching control message, each MH knows the remaining
available cache space of other MHs in a group and the
IDs and timestamps of their cached data objects.

First of all, when an MH receives a data object
(called receiving MH), it caches the data object if the
cache space is enough. Otherwise, the receiving MH
checks the available cache spaces of its group members.
If the available cache space of any group member is
sufficient to store the data object, the receiving MH puts
the data object to the group member randomly.

Second, if the available cache space of every group
member is not sufficient to cache the received object,
the reciving MH lookups the group_table to see if there
exists a group member that already caches the data
object. If yes, the data object is not cached. If no, the

International Conference on Networking, Architecture, and Storage (NAS 2007)
0-7695-2927-5/07 $25.00 © 2007

receiving MH selects the “appropriate group member”
which has the oldest timestamp of the cached data
object in the group_table and sends the data object to
that group member to do placement. When a group
member receives a data object from the receiving MH, it
repeatedly performs the

Figure 2: The process of receiving a data item.

 in self_table or group_table) THEN

4 Placement_Algorithm(di)

ace of receiving MH > size of d) THEN

03 ELSE)
 Push d to the group member randomly; Return

e group_table

 cache

ber” in its group
10 Push d to selected group member

When a data object di arrives

 LRU replacement operations to
increase available cache space until the received data

uester redirects the data request to
tha

for

s the cache placement and replacement
described in section 3.3 according to their self_table and

 asks the data
source to see if the cached data object is valid or not.

nd the constrain of
wirel

ster caches the replied data
object for itself. All schemes use LRU as the cache

rformance metrics is
intro

6000 seconds. The number of mobile hosts is set to 100

object can be cached.

3.4 Data discovery process
The process of data discovery performs the searches

in the caching nodes for the requested object. In
GroupCaching, when a requester (source) wants to
retrieve a data object from the data source, it first
checks its self_table to see if the data object exists
locally. If yes, it returns the data object (cache hit) to the
application. If no, it lookups its group_table for the data
object, if yes, the req

t group member, and waits the replied data object
(remote cache hit).

If the requester can not find any cached record for
the desired data object in the self_table and group_table,
it starts to execute the data discovery process. Initially,
the requester constructs a routing path to the destination
and sends the data request to the next MH in order to
reach the data source (destination). Figure 3 shows the
algorithm of receiving a data request in an MH. When
the intermediate nodes receive a data request in the
routing path, they lookup their self_table and
group_table for the data request. The process of lookup
first searches self_table and then searches the
group_table. If the receiving MH can not find the record

 the request in its selft_table and group_table, it
forwards the request to the next MH on the routing path.

If the destination (data source) receives the data
request, it replies the data object via the routing path.
When the intermediate node receives the pass-by data
object, it perform

group_table.

3.5 Cache consistency problem
There are two schemes that can deal with the cache

consistency problem: weak consistency and strong
consistency. Under the weak consistency, a cached data
object is associated with an attribute, TimeToLive
(TTL). If the TTL time expires, the cached data object is
removed. Under the strong consistency, if a cached data
object is requested, the caching node first

Replacement policy LRU

Because of the energy concern a
ess bandwidth, we prefer using the weak

consistency in mobile ad hoc networks.

4. Performance Evaluation
The performance evaluation is shown in this

section. The simulation model is given in Section 4.1. In
Section 4.2, we verify the results of SimpleCaching,
CacheData [1],[12] and ZoneCooperative [11] and
compared with the proposed GroupCaching. In
SimpleCaching, only reque

replacement policy. The pe
duced in Section 4.3. Section 4.4 shows the results

in performance evaluation.

4.1 The simulation model
The simulation is performed on NS2 [9] with the

CMU wireless extension. In our simulation, the AODV
routing protocol [14] was tested as the underlying ad
hoc routing algorithm. The simulation time is set to

Simulator Network Simulator (NS2) [9]
e ds

 x 500m
host 100nodes

ge 100m
lity model Random way point

econd
f total data item set

query
in hot data

Cache size
00kBytes,

Data [1], ZoneCooperative
[2], Proposed GroupCaching

 Th remeters.

Figure

When a request for data item di arrives
(01 IF (there is a valid copy 01 IF there is a valid copy in self_table) THEN

d d to the requester 02 no cache 02 sen i

05
06

03 ELSE 03 ELSE IF (there is a valid entry in group_table) THEN
04 re-direct the request to the group member 0

 ELSE
 forward the request to the next MH by routing path Placement_Algorithm (d) i

01 IF (available cache sp i
02 Cache di; Return

 IF (available cache space of group member > size of di
3: The process of receiving a data request in an MH.

THEN Table 1: e simulated pai
04 ELSE
05 Lookup the d in thi
06 IF (Find) THEN Simulation tim 6000 secon

Network size
Mobile

1500m07 No
08 ELSE

Transmission ran09 Select the “appropriate group mem
of MH
Mobi

i

Speed of mobile
host 1~10 m/s randomly

Total of data item 1000 data item set
Average query rate
Hot data

0.2 / s
20% o

Probability of 80%
Data size 10kBytes

200kBytes, 400kBytes,
600kBytes, 8
1000kBytes, 1200kBytes,
1400kBytes

Compared schemes Cache

International Conference on Networking, Architecture, and Storage (NAS 2007)
0-7695-2927-5/07 $25.00 © 2007

in a fixed area. We assume that the wireless bandwidth
is 2MB/s and the radio range is 100m. There are totally
1000 data items distributed uniformly among all MHs.
The number of hot data objects is set to 200 and all hot
data objects are distributed uniformly among all MHs.
The probability of queries for the hot data is s

GroupCaching 4.49 4.3

(b) Experiment under dif

et to 80%.
The query rate of MHs is set to 0.2/second. In order to

 operations, we set a
join/

ly in the area. Each node selects a
random destination and moves toward the destination

mly from (0 m/s, 10 m/s).
Afte

 1.

e evaluated performance metrics are average
hop

average latency of
data

nodes.
he combined cache hit ratio in

 members

4.4 Simulation results

. The simulation is
he sizes and different join/leave

rates

n MH joins the
network, its available cache space can be utilized by
other MHs. Therefore, In GroupCaching, the cache hit
ratio is higher than other schemes. In ZoneCooperative

ly in the area. Each node selects a
random destination and moves toward the destination

mly from (0 m/s, 10 m/s).
Afte

 1.

e evaluated performance metrics are average
hop

average latency of
data

nodes.
he combined cache hit ratio in

 members

4.4 Simulation results

. The simulation is
he sizes and different join/leave

rates

n MH joins the
network, its available cache space can be utilized by
other MHs. Therefore, In GroupCaching, the cache hit
ratio is higher than other schemes. In ZoneCooperative

simulate the node join and leave
leave rate. If the value of join/leave rate is 20, there

will be ten MHs randomly joining and leaving the
network every 20 seconds. If an MH joins or leaves the
network, its content of cache will be cleared.

4.2 The node movement model
We model the movement of nodes in a 1500m x

500m rectangle area. The moving pattern follows the
random way point mobility model [15]. Initially, nodes
are placed random

 way point mobility model [15]. Initially, nodes
are placed random

with a speed selected randowith a speed selected rando
r the node reaches its destination, it pauses for a

random period of time and repeats this movement
pattern. The detail of other simulation parameters is
shown in Table

r the node reaches its destination, it pauses for a
random period of time and repeats this movement
pattern. The detail of other simulation parameters is
shown in Table

4.3 Performance metrics
Th

4.3 Performance metrics
Th
count, cache hit ratio (includes remote cache hit

ratio in remote caching nodes), and
count, cache hit ratio (includes remote cache hit

ratio in remote caching nodes), and
 objects.
Average hop count: The number of hop counts

between the source and the destination or caching

 objects.
Average hop count: The number of hop counts

between the source and the destination or caching

Cache hit ratio: TCache hit ratio: T
the requester and its groupthe requester and its group

Average latency: The time interval between the
time of generating a query in the requester and the time
of receiving requested data object from the data source.

4.4.1 Average hop count
We first measure the hop counts in all schemes.

Table 2 shows the average hop count between the
source and the destination when a requester wants to
retrieve a data object. The destination can be the data
source or intermediate caching nodes

Average latency: The time interval between the
time of generating a query in the requester and the time
of receiving requested data object from the data source.

4.4.1 Average hop count
We first measure the hop counts in all schemes.

Table 2 shows the average hop count between the
source and the destination when a requester wants to
retrieve a data object. The destination can be the data
source or intermediate caching nodes

3.93 3.77 3.59 3.26

nt join/leave rate

run under different cacrun under different cac
. In all schemes, when the cache size is large, the

average hop count is reduced. In GroupCaching, the
average hop count is the lowest because the
GroupCaching improves the cache hit ratio and then
reduce the average hop count.

4.4.2 Cache hit ratio
Figure 4 shows the cache hit ratios of MHs under

different cache sizes and join/leave rates. The measured
cache hit ratio includes the cache hit (local cache hit) in
the requester and cache hit in the other MHs (remote
cache hit) except the data source. The cache size is set
to 200KB, 400KB, 600KB, 800KB, 1000KB, 1200KB
and 1400KB. The size of a data item is set to 10KB. The
pair of source and destination nodes is randomly
selected in the simulation. In general, the cache hit ratio
increases while the cache size increases. Figure 4 (a)
shows the GroupCaching has a higher cache hit ratio
than others because both the MH and its group members
can store data objects. These cached data objects
impr

. In all schemes, when the cache size is large, the
average hop count is reduced. In GroupCaching, the
average hop count is the lowest because the
GroupCaching improves the cache hit ratio and then
reduce the average hop count.

4.4.2 Cache hit ratio
Figure 4 shows the cache hit ratios of MHs under

different cache sizes and join/leave rates. The measured
cache hit ratio includes the cache hit (local cache hit) in
the requester and cache hit in the other MHs (remote
cache hit) except the data source. The cache size is set
to 200KB, 400KB, 600KB, 800KB, 1000KB, 1200KB
and 1400KB. The size of a data item is set to 10KB. The
pair of source and destination nodes is randomly
selected in the simulation. In general, the cache hit ratio
increases while the cache size increases. Figure 4 (a)
shows the GroupCaching has a higher cache hit ratio
than others because both the MH and its group members
can store data objects. These cached data objects
improve the cache hit ratio. Figure 4 (b) shows the
experimental results under the dynamic topology. In
every 20, 40, 60, 80, 100, and 120 seconds, ten MHs are
selected randomly for joining and leaving the network.
When an MH leaves the network, it removes all cached
data objects. When the MH joins the network, the
content of its cache is set to empty.

 GroupCaching shows the highest cache hit ratio
because it utilizes all the available cache space of
neighbors (group members). When a

ove the cache hit ratio. Figure 4 (b) shows the
experimental results under the dynamic topology. In
every 20, 40, 60, 80, 100, and 120 seconds, ten MHs are
selected randomly for joining and leaving the network.
When an MH leaves the network, it removes all cached
data objects. When the MH joins the network, the
content of its cache is set to empty.

 GroupCaching shows the highest cache hit ratio
because it utilizes all the available cache space of
neighbors (group members). When a

Cache size Cache size 2 4 6 8 1 12 B 1 2 4 6 8 1 12 B 1

ZoneCooperative 4.1 3.51 3.32 3.39
GroupC 4 55

xperime er diff che si
L 1/ . 1/ . 1 . 1 1/1 c. 1/ .

ZoneCooperative 3.62 3.51

Average ount un ferent n ache siz nd leav rate (b). Table 2: hop c der dif ode c e (a) a e/join
00KB00KB 00KB00KB 00KB00KB 00KB00KB 000KB000KB 00K00K 400KB400KB

SimpleCache 4.75 4.79 4.92 4.95 4.81 4.86 5.21
CacheData 4.22 4.15 3.82 3.93 3.81 3.8 3.77

3.63 3.95 3.67
aching 3.9 3.59 3.69 3.51 3.26 3.03 3.2

(a) E nt und erent ca ze
eave/Join rate 20sec 40sec /60sec /80sec. 00se 120sec
SimpleCache 4.72 4.64 4.737 4.99 4.64 4.81
CacheData 4.51 4.46 4.27 3.955 3.7 3.81

4.61 4.37 4.05 4.05

fere

International Conference on Networking, Architecture, and Storage (NAS 2007)
0-7695-2927-5/07 $25.00 © 2007

0

10

20

30

40

50

60

1/20 .

C
ac

he
 h

it
ra

tio
 (%

)

SimpleCache

CacheData

ZoneCooperative

GroupCaching

0

10

20

30

40

50

60

B 1400KB

C
ac

he
 h

it
ra

tio
 (%

)

SimpleCache

CacheData

ZoneCooperative

GroupCaching

sec. 1/40sec. 1/60sec. 1/80sec. 1/100sec. 1/120sec200KB 400KB 600KB 800KB 1000KB 1200K

Node leave/join rateCache size

(a) Cache hit ratio verus cache size (b) Cache hit ratio verus leave/join rate
tFigure 4: Cache hit ratio under different node cache size (a) and leave/join rate (b).

and CacheData schemes, there is no cooperative caching
protocol among MHs. So the MH can not efficiently
integrate their neighbor’s cache space.

4.4.3 Average latency
Figure 5 shows the average latency under different

cache sizes and different join/leave rates. We know that
ZoneCooperative scheme has no cooperative protocol
among the MHs. Therefore, when an MH receives a
data request, it needs to send a request to its zone and
waits for the response. As a result, it leads to the long
latency if there is no cache record in a zone along the
routing path. In GroupCaching, the MH and its one-hop
neighbors form a group. If a data request is received, the
MH can check its self_table and group_table
immediately. No communication with its neighbors is
needed to know the caching status in other group
members. As a result, the average latency is reduced.

lacement and replacement algorithms
exec

grou

ilized by its neighbors
as soon as it joins a group. It improves the cache hit

uces the average lateny compared with
es. In the future work, we will investigate

Sci

Re
[1]

g in Ad Hoc Networks,”IEEE INFOCOM,

[2]

99.

edia Objects in MANETs,” Proc.

[4]
Algorithms: Design, Implementation, and

Also, due to the p
uted in a group, all the MHs in a group member can

cache more data objects and then reduce the redundancy
of the cached data. Therefore, the average latency is
reduced compared with other schemes.

5. Conclusion
In this paper, we propose a cooperative caching

scheme (GroupCaching) for mobile ad hoc networks.
MHs maintain the localized caching status among the

(b) latency verus leave/join rate

20

25

30

35

40

45

50

55

60

200KB 1400KB

A
ve

ra
ge

 d
at

a
la

te
nc

y

SimpleCache

CacheData

ZoneCooperative

GroupCaching

30

35

40

45

50

55

1/120sec.

A
ve

ra
ge

 d
at

a
la

te
nc

y

SimpleCache

CacheData

ZoneCooperative

GroupCaching

400KB 600KB 800KB 1000KB 1200KB

Cache size
1/20sec.

Node leave/join rate

1/40sec. 1/60sec. 1/80sec. 1/100sec.

Figure 5: Average data latency under different node cache size (a) and leave/join rate (b).
(a) latency verus cache size

p members. Therefore, the MHs can cooperative to
store different data objects. Furthermore, if an MH has
available cache space, it can be ut

ratio and red
existing schem
the integration of broadcasting and cooperative caching.

ACKNOWLEDGMENTS

This work was supported in part by the National
ence Council, Republic of China, under Grant

NSC-95-2221-E-006-163 -MY2.

ference
L. Yin and G. Cao, “Supporting Cooperative

Cachin
pp. 2537-2547, March 2004.
C. Aggarwal, J. Wolf, and P. Yu, “Caching on the
World Wide Web,” IEEE Trans. Knowledge and
Data Eng., vol. 11, no. 1, Jan./Feb. 19

[3] W. Lau, M. Kumar, and S. Venkatesh, “A
Cooperative Cache Architecture in Supporting
Caching Multim
Fifth Int’l Workshop Wireless Mobile Multimedia,
2002.
J. Shim, P. Scheuermann, and R. Vingralek, “Proxy
Cache
Performance,” IEEE Trans. Knowledge and Data

International Conference on Networking, Architecture, and Storage (NAS 2007)
0-7695-2927-5/07 $25.00 © 2007

Eng., vol. 11, no. 4, July/Aug. 1999.
 D. Wessels and K. Claffy, “ICP and the Squid Web [5]

[6]

Computer, pp. 32-39, February

[7]
c Networks,”International Conference on

[8]

mputing Systems Workshop

[9]

[10]
and J. Jetcheva, "A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing
Protocols," Proc. of ACM/IEEE Mobicom’98,
Dallas, TX, 85-97.

[11] i, R.C., and Misra, M., "Efficient

8-12 Jan. 2006

[12]L

89

 11,

[14]

[15] T. Camp, J. Boleng, and V. Davies, 2002. A Survey
of Mobility Models for Ad Hoc Network Research.
Wireless Comm. & Mobile Computing (WCMC):
Special issue on Mobile Ad Hoc Networking:
Research, Trends and Applications, 2 (5): 483-502.

Cache,” IEEE J. Selected Areas in Comm., pp.
345-357, 1998.
G. Cao, L. Yin and C. Das, “Cooperative Cache
Based Data Access Framework for Ad Hoc
Networks,” IEEE
2004.
F. Sailhan and V. Issarny, “Cooperative Caching in
Ad Ho
Mobile Data Management (MDM), pp. 13-28, 2003.

C.-Y. Chow, H.V. Leong and A. Chan,
“Peer-to-Peer Cooperative Caching in Moible
Environments,” Proceedings of the 24th Intl. Conf.
on Distributed Co
(ICDCSW), 2004.
K. Fall and K. Varadhan, “The NS2 manual”, the
VINT Project, http://www.isi.edu/nsnam/ns/. Apr.
2002.
 J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu,

 Chand, N. Josh
Cooperative Caching in Ad Hoc Networks
Communication System Software and
Middleware," 2006. Comsware 2006. First
International Conference on 0
Page(s):1 - 8
iangzhong Yin; Guohong Cao, "Supporting
cooperative caching in ad hoc networks," IEEE
Transactions on Mobile Computing, Volume 5,
Issue 1, Jan. 2006 Page(s):77-

[13] Joonho Cho, Seungtaek Oh, Jaemyoung Kim,
Hyeong Ho Lee, Joonwon Lee, "Neighbor caching
in multi-hop wireless ad hoc networks," IEEE
Communications Letters, Volume 7, Issue
Nov. 2003 Page(s):525 – 527
 C. Perkins, E. Belding-Royer, and I. Chakeres, “Ad
Hoc On Demand Distance Vector (AODV)
Routing,” IETF Internet draft,
draft-perkins-manet-aodvbis-00.txt, Oct. 2003.

International Conference on Networking, Architecture, and Storage (NAS 2007)
0-7695-2927-5/07 $25.00 © 2007

